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1. INTRODUCTION

Lakshmikantham and Leela [1] introduced the perturbing Liapunov function method which per-
mits us to discuss nonuniform properties of solutions of systems of differential equations under
weaker assumptions. This method was considered from other view of many authors (see [2—4]).

Akpan et al. [5] introduced ¢g-stability for ordinary differential equations. This notion was
improved and extended to the systems of functional differential equations.

The main purpose of this paper is to discuss Lipschitz stability [6] and Lipschitz ¢o-stability {7}
of the system of functional differential equations via perturbing Liapunov functional method of
[4].

Let R"™ be the n-dimensional Euclidean real space, with any convenient norm ||.||, and scalar
product (.,.) < -l II.ll, R* = [0,00), and let C[RT x R", R"] denote the space of continuous
mapping BT x R into R™. The following definitions will be needed in the sequel.

DEFINITION 1.1. (See [5].) A proper subset K C R" is called a cone if

(i) MdKCK,X2>0,

ity K+ K CK,

(i) K = K,

(iv) K°#90,

(v) Kn(-K) =0,
where K and K° denote the closure and interior of K, respectively, and K denotes the boundary
of K.

*Present address: Department of Mathematics, Faculty of Teachers, Al-Jouf, Skaka, P.O. Box 269-957, Saudi
Arabia.

0893-9659/04/$ - see front matter © 2004 Elsevier Ltd. All rights reserved. Typeset by AAS-TEX
doi:10.1016/j.aml.2003.10.008



940 A. A. SOLIMAN

The order relation on R™ induced by the cone K is defined as follows. Let z,y4 € K, then
zlg, > y—zcK,and z <goye= y—z € K°.

DEFINITION 1.2. (See [5].) The set K* is called the adjoint cone if
K*={¢eR":($,x) 20}, forzckK,

satisfles Properties (i)—(v} of Definition 1.1,

DEFINITION 1.3. (See [5].) A function g: D — R™, D C ®" is called quasimonotone relative to
the cone K, if z,y € D and y — z € 0K, then there exists ¢, € K¥ such that (¢o,y —z) = 0 and
(45, 9(v) — g(z)) 2 0.

DEFINITION 1.4. (See [8].) A function b(r) is said to belong to the class K if a € C[RT,R*],
b(0) =0, and b(r) is strictly monotone increasing inr. Let 7o(z,y) = 0 for (z,y) € 5™(p) x S™(p).

Consider systems of functional differential equations

.’E, = f(t,xt), Tty = ’()b, (11)

where f € C[J x Cy, K], K C R" is a cone, J = [tp, 00), and

pr=Cll=n LR, Co={pep”:[dllo<ph and ¢l = _max lg(s)ll,

C[J x Cy, K| denotes the space of continuous mapping J x Cp — K.
For z4(s) = z{t + s), —r < s < 0, and z.(¢o, %) being a solution of (1.1) with initial values
24, = 9, define

Solp) = {at € Co : lasl] < ).
Following [1], we define a Liapunov functional V{t,z;) € C[J x Cp,®"] which is Lipschitzian

in z;, and the functional

1
D+V(t, .'Et) = hli,%l+ sup E [V(t + h, $t+h) - V(t, zt)].

The first work dedicated to this method was done by Lakshmikantham and Leela [1].

DEFINITION 1.5. (See [6].) The zero solution of (1.1) is said to be Lipschitz stable if for € > 0
and to € R*, there exist a positive constant §(to,€) > 0 and M > 1 such that

¥l <6 = llz:(to, V)| < Mli¥ll, M >1,

where z; is any solution of (1.1).
In the case of uniform Lipschitz stability, ¢ is independent of tg.

DEFINITION 1.6. (See [7].) The zero solution of (1.1) is said to be Lipschitz ¢o-stable if for e > 0,
to € J, there exist a positive function §(tg,€) > 0 and M > 1 such that for ¢p € K

(¢07$:(t0a¢')) S (¢07M¢)7 t _>_ th

provided that (¢g, ) < 6.
In the case of uniform Lipschitz ¢o-stability, § is independent of tg.
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2. LIPSCHITZ STABILITY

In this section, we discuss the concept of perturbing Liapunov functionals method for the
Lipschitz stability property of the system of functional differential equations (1.1).

THEOREM 1. Let E C R™ be a compact subset and suppose that there exist two functions
g1 € CIRT x RT )R] and go € C[RT x R, R, and let there exist two functionals Vi(t,z:) €
C[J x Be,®*], Va(t,z:) € CLJ x S§(n), R+, with Vi(,0) = Va(t,0) = g1(t,0) = ga(t,0) = 0 such
that

(A1) Vi(t, =) is Lipschitzian in z; and
D'Wi(t,ze) S g1t Valt,ze)),  (t,7e) € T x So(p);
(Ap) Val(t,z:) is Lipschitzian in x; and
al|lz:l} < Va(t, z1) < bz,

where a,b € K, (t,z:) € (J x S§(n));
(As) for each (t,z;) € (J x S§(n)),

D*Vi(t,z,) + DY Va(t,20) < go(t, Vi(t, ) + Va(t, 20));
(A4) also assume that the zero solution of the scalar differential equation
v = g1(t,u), u(to) = uo > 0, (2.1)
is Lipschitz stable, and the zero solution of the scalar differential equation
w' = go(t,w), w(to) = wo = 0, (2.2)

is uniformly Lipschitz stable.
Then, the zero solution of system (1.1) is Lipschitz stable.
PRroOOF. From the compactness of E, there exists a p such that

S(E,PO) = {mt € CQ,d(fCt,E) < PO} C S(P),

where d(z, E) = infyecg ||z — y||. Suppose that a > p be given and a; = a1 (tg, &) = max(a, o),
where

o = max([Vy(to, ¥) : Yo € S(p) N E7, a* > Vi(t,xe).
From our assumption, the zero solution of (2.1) is Lipschitz stable, for to € R+, and there exist
d1 = 8a(to,€) > 0, and M > 1 such that
u(t,to,uo) < Mug, t 2 to, (23)

provided that ug < 8y, u(t, ¢, ug) being any solution of (2.1).
Also, since the zero solution of equation (2.2) is uniformly Lipschitz stable, letting 0 < e < p
and t; € R, and t, € R, there exist 63 = d2(€) > 0, and N > 1 such that

’LU(t,to,wo) < Nwy, t > tg, (24)

provided that wo < &2, where w(t, to, wo) is any solution of equation (2.2).
Following [9], choosing ug = Vi{to, uo), and 8; = b(d) + d2, as b(s) — oo with s — oo, we can
choose §; = 81 (to, €) such that

[N =

b(61) > =, (2.5)
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since Vi (¢, z;) is continuous and V;(¢,0) =0,
¥l <6 and [Vi(to,)ll <b(e), beK. (2.6)

Now, to prove that the zero solution of system (1.1) is Lipschitz stable, we must prove that for
€ >0, to € RT, there exist §* > 0 and M > 1 such that

9l < 6% = ||lz:(to, V)l < M, t 2t
Suppose that this is not true, there exist ¢1,%y > ty such that for |[¢| < &%,

|4, (o, P)|| = €,
llacs, (B0, ¥)I} = 6%, (2.7)
lze(to, D) < MIll, T € [ts,t2].

Let 6* = ¢/2M, and b(6*) < a(e), so that the existence of V3, satisfies Condition (Ag). Setting

m(t) = Vl(t’ mt(t()"‘/")) + VQ-")(t"Tt(tOv d)))’ te [tlvtO]a

we get
Drm(t) < ga(t, m(t)), t € [t1,t2],

which yields from Theorem 8.1.2 of [9],

Vi(t2, T, (to, ¥)) + Vau(ta, 24, (fo, ¥)) < ralta,tr, Vi(ts, ze, (to, ¥)) + Vo (81, 4, (Y0, %)),

where 7o(t1, 1, wo) = wo, T2(t1,t1,wo) is the maximal solution of (2.2).
Also, we have

Vi(t1, ze, (0, ¥)) < m1(te,to, Vi(to, V),

where 71 (t1,%0, uo) is the maximal solutions of (2.1).
By (2.5) and (2.6), we have

6*
I/l(tl’:ctl (tﬂvw)) < '5' (28)
From (2.4) and (2.7), we get
‘/Z.n(thxtl (t07¢)) < % (29)

Thus, (2.3), (2.7)—(2.9), and (As) yield the following contradiction:

a(e) = aljz, (to, V)|l
< Vaq(t1, 2, (t0, ¥))
< bllme, (to, V)|
— b(5")
< afe).

Thus, the zero solution of (1.1) is Lipschitz stable, and the proof is completed.

3. LIPSCHITZ ¢3-STABILITY

In this section, we discuss Lipschitz ¢o-stability of the system of functional differential equa-
tions (1.1) via the perturbing Liapunov functional method.
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THEOREM 2. Suppose that there exist two functions G1 € C[R* x R+, R"| and G; € C[R* x

R+, R"], and two functionals Vy(t,z:) € C[J x E°, K|, Va(t,z:) € C[J x So(p) N S§(n), K], with
Vl(t,O) = Vg(t, 0) = Gl(t,O) = Ga(t, 0) = 0 such that

(As) for every > 0, there exists a function V5 (¢, z:) € C[J x S(p) x §%(n), Rt], Vi(t,z;) is
Lipschitzian in x; and

D+(¢0,V1(t,mt)) S Gl(t, Vl(t,a:t)), (t, :tt) S J X So(p);
(Ag) Vaq(t,z;) is Lipschitzian in z; and
a(¢po,x3) < (¢o, Vapn(t, x:)) < b(do, T;),

where a,b € K, (t,x:) € J x So(p) N S§{n), and ¢g € K§;
(A7) for each ¢g € K§, (t,z:) € J x So(p) N S§(n),

D™ (¢o, Vi(t, z:)) + D¥ (¢o, Va(t, 21)) < Ga(t, Vi(t, z:) + Valt, z1));
(Ag) the zero solution of the system
v = G(t,u), u(te) = up > 0, (3.1)
is Lipschitz ¢o-stable, and the zero solution of the system
v = G(t,w), w(to) = wo > 0, (3.2)

is uniformly Lipschitz ¢g-stable.
Then, the zero solution of (1.1) is Lipschitz ¢g-stable.

PRrOOF. Since the zero solution of (3.2) is uniformly Lipschitz ¢g-stable, let 0 < ¢ < p, for
to € RT, there exist & = dp(e) > 0 and M > 1 such that for ¢ € K3

(¢o,r2(t, to, wo)) < (¢o, Mwo), t > to, (3.3)

provided that (¢, wg) < &g, where ro(t,to, wp) is the maximal solution of (3.2).
From the assumption on b(s), there exists §2 = da(€) > 0 such that

0(52) < 530 (3.4)

From our assumption, the zero solution of (3.1) is Lipschitz ¢o-stable, for to € R+, there exists
81 = 61(to,€) > 0, M > 1, such that for ¢g € K

(o, 71(t, o, u0)) < (¢o, Mug), t > to, (3.5)
provided that (¢o,uo) < 81, 71(¢,%0,ug) being the maximal solution of (3.1).

Following [1], choosing 9 = V1 (to, ¥), since Vi(¢, z;) is continuous and Vi (%, 0) = 0, there exists
83 > 0 such that for ¢o € K3

(¢01¢) < d3 = (¢07V1(t0a¢)) <€ t > to. (36)
Now, to prove that the zero solution of (1.1} is Lipschitz ¢g-stable, it must be proved that

(¢03'¢7) < 63 = (¢o,$:(to, 1/))) < (¢07M¢), M > 11 t 2 tOv
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where 7 is the maximal solution of (1.1). Suppose that this is not true, then there exist ¢;, %5 > to
such that for (¢o,v) < 43,

(B0, 27, (B0, ¥)) =€,
(¢0, 27, (t0, ¥)) < 8, (3.7)
(90, zi(t0, %)) < (b0, My),  te[ts,ta].

Let 63 =17/2 and a(d3) < a(e), so that Condition (Ag) is assured. Setting

m(t) = Vi(t, ze(to, ) + Vay(t melto, ¥)),  t € [t1,t0],
we get for ¢g € K§
D*(¢o,m(t)) < Ga(t,m(t)),  te€[t1,ta],
which yields from Theorem 1.8.2 of [9]
(b0, Vi(ta, 2, (to, %)) + Vo (ta, e, (to, )
< (@0, 2(t2, 11, Vi(te, @, (to, %)) + Vo (tr, 2, (to, ¥)))),

where (1,20, wo) is the maximal solution of (3.2) with 72(t;,t0, wo) = w.
Also, we have for ¢o € K

(@0, Vi(t1, ¢, (to, %)) < (b0, m1(t1, b0, Vi(to, ¥))),

where 71 (t1,%0,u0) is the maximal solution of (3.1).
By (3.5) and (3.6), we have

é
(o, Va(t1, x5, (to, ¥))) < - (3.8)
From (3.4) and (3.7), we get
)
(90, Vaun(ts, 27, (to, ) < 5 (3.9)
Thus, (3.3), (3.7)-(3.9), and (Ag) yield the following contradiction:
a(e) =a (¢07 .’B; (tO, "p))
< (¢0) V2.T[ (tla 1":1 (t07 ’¢')))
< b ((]507 93:2 (t0> "/)))
=b(83)
< a(e).
Thus, the zero solution of (1.1) is Lipschitz ¢q-stable, and the proof is completed.
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