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1.  I N T R O D U C T I O N  

Lakshmikan tham and Leela [1] introduced the per turbing Liapunov function me thod  which per- 
mits us to discuss nonuniform propert ies of solutions of systems of differential equations under 
weaker assumptions.  This method was considered from other  view of many  authors (see [2-4]). 

Akpan  et al. [5] introduced ¢0-stabili ty for ordinary differential equations. This notion was 
improved and extended to the systems of functional differential equations. 

The  main purpose of this paper  is to discuss Lipschitz stabil i ty [6] and Lipschitz ¢0-stabili ty [7] 
of the sys tem of functional differential equations via per turbing Liapunov functional method of 
[4]. 

Let  ~n be the n-dimensional Euclidean real space, with any convenient norm I1-11, and scalar 
product  (., .) < I1-11 N.11, g~+ -- [0, oo), and let C [ ~  + x ~'~, ~n] denote  the space of continuous 
mapping  3 + x g~  into ~" .  The  following definitions will be needed in the sequel. 

DEFINITION 1.1. (See [5].) A proper subset  K c ~n is called a cone if 

(i) A K c K ,  A>O,  
(ii) K+KcK, 

(iii) /~ = K ,  
(iv) K °'# 0, 
(v) K n  ( - K )  = 0, 

where ~[ and K ° denote the closure and interior of K, respectively, and OK denotes the boundary 
of K.  
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The order relation on ~n induced by the cone K is defined as follows. Let x, y E K,  then 
x _<K~ ¢==~ y - x E K,  and x <_goy¢===~ y -- x C K °. 

DEFINITION 1.2. (See [5].) The set K* is called the adjoint cone i f  

/<* = {¢ c ~ :  (¢, ~) > 0}, for x c K,  

satisfies Properties ( i )-(v)  of Definition 1.1, 

DEFINITION 1.3. (See [5].) A function g : D -+ ~ ,  D C ~'~ is called quasimonotone relative to 
the cone K ,  i f  x,  y ~ D and y - x E OK, then there exists ¢o E K~ such that  (¢o, y - x) = 0 and 

(¢o ,g (y )  - g (x ) )  ___ 0. 

DEFINITION 1.4. (See [8].) A function b(r) is said to belong to the class ]C i f  a C C[~  +, ~+], 
b(O) = O, and b(r) is strictly monotone increasing in r. Let  To(X, y) = 0 for (x, y) e Sn(p) × Sin(p). 

Consider systems of functional differential equations 

x '  = f ( t ,  xt) ,  xto = ¢,  (1.1) 

where f C C[J  x Co, K], K C g%~ is a cone, J = [to, oo), and 

p'~ = C[ [ - r ,  0],Nn], Co = {¢ E p n :  II¢llo < p}, and I1¢il = max ]]¢(s)ll, 
- r < s < O  

C[J x Co, K] denotes the space of continuous mapping J x Co --* K.  

For xt (s )  = x ( t  + s), - r  < s < 0, and xt(to, ¢) being a solution of (1.1) with initial values 
Xto = ¢,  define 

So(p) = {x~ e Co:  Ilxt]l < p}. 

Following [1], we define a Liapunov functional V(t ,  xt)  E C[J x Co, Nn] which is Lipschitzian 
in xt,  and the functional 

D+V( t ,  xt)  = lim sup l [ v ( t  + h, Xt+h) -- V( t ,  xt)]. 
h---+O+ t~ 

The first work dedicated to this method was done by Lakshmikantham and Leela [1]. 

DEFINITION 1.5. (See [6].) The  zero solution of  (1.1) is said to be Lipschitz  stable i f  for e > 0 
and to C ~+, there exist a positive constant 5(to, e) > 0 and M > 1 such that  

II¢1] < 5 ~ ][xt(to, %b)]] <_ M[]¢II, M > 1, 

where x, is any solution of  (1.1). 

In the case of  uniform Lipschitz stability, 5 N independent of  to. 

DEFINmON 1.6. (See [7].) The zero solution d ( 1 . 1 )  is sNd to be Lipschitz  Co-stable fffor  e > 0, 
to E J ,  there exist a positive function 5(to, e) > 0 and M > 1 such tha t  for ¢o C K~ 

( ¢ o , z ~ ( t 0 , ~ ) )  ___ (¢0, M e ) ,  t _> to, 

provided that (¢0, ¢)  < 5. 

In the case of  uniform Lipschitz Co-stability, 5 is independent  o f  to. 
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2.  L I P S C H I T Z  S T A B I L I T Y  

In this section, we discuss the concept of perturbing Liapunov functionals method for the 
Lipschitz stability property of the system of functional differential equations (1.1). 

THEOREM 1. Let E c g~n be a compact subset and suppose that there exist two functions 
gl e C[~ + x R+,~] and g2 • C[~ + x ~+,~] ,  and let there exist two functionals Vl(t, xt) 6 
C[J x / ~ c  ~+], V2(t, xt) • C[J × S~(~), N+], with Vl(t, 0) = V2(t, 0) = gl(t, O) = g2(t, 0) = 0 such 
that 

D+Vl(t, xt) <_ gl(t, Vl(t, xt)), (t, xt) C J x So(p); 

(A2) V2(t, xt) is Lipschitzian in xt and 

allx~[I _< v2(t, xt) < blCttl, 

wherea, b E ~,  (t, xt) C (J x S~(~)), 
(As) for each (t, xt) • (J x SgO?)) , 

D+Vl(t, zt) + D+V2(t, xt) <_ g2(t,V:(t, xt) + V2(t, xt)); 

(A4) also assume that the zero solution of the scalar differential equation 

u' = g l ( t ,u ) ,  u(to) = u o  > 0, (2.1) 

is Lipschitz stable, and the zero solution of the scaJar differential equation 

w' = g~( t ,~) ,  w(t0) = ~o  > o, (2.2) 

is uniformly Lipschitz stable. 

Then, the zero solution of system (1.1) is Lipschitz stable. 

PROOF. From the compactness of E, there exists a p such that 

S(E, Po) = {xt E Co, d(xt, E) < po} C S(p), 

where d(x, E) = infusE IIx --YI[. Suppose that a > p be given and a l  = al(to, a) = max(ao, a*), 
where 

ao = max[Vl(to, ¢) : ¢o • S(p) 0 EC], a* >_ Vl(t, xt). 

Prom our assumption, the zero solution of (2.1) is Lipschitz stable, for to E N+, and there exist 
51 = 52(to, e) > O, and M > 1 such that 

u(t, to, uo) < Muo, t >_ to, (2.3) 

provided that uo < 51, u(t, to, uo) being any solution of (2.1). 
Also, since the zero solution of equation (2.2) is uniformly Lipschitz stable, letting 0 < e < p 

and to C N, and to C N+, there exist 52 = 52(e) > 0, and N > 1 such that 

w(t, to, Wo) < Nwo, t >__ to, (2.4) 

provided that w0 < 52, where w(t, to, wo) is any solution of equation (2.2). 
Following [9], choosing u0 = Vl(to,uo), and 51 = b(5) + 52, as b(s) ~ c~ with s --* oo, we can 

choose 51 = 51( t0 ,  E) such that 
5 b(51) > ~, (2.5) 

(A1) Vl(t, xt) is Lipschitzian in xt and 
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since 1/1 (t, xt) is continuous and Vl(t, 0) = 0, 

11¢1] < 5 and I1vl(to,¢)l[ < b(e), b E K. (2.6) 

Now, to prove that  the zero solution of system (1.1) is Lipschitz stable, we must prove that  for 
e > 0, to E N+, there exist 5* > 0 and M > 1 such that  

ll¢ll < 5* ~ l lxt(t0,¢) l l  < Mt[¢l l ,  t _> to. 

Suppose tha t  this is not true, there exist tl,t2 > to such that  for [1¢]1 < d*, 

Hz~,(to,¢)ll = ~, 

IIx,2(to, ¢)11 = 5", (2.7) 

[Ixt(to,¢)[I < Ml[¢ll, t e [tt,t2]. 

Let 5* = e/2M, and b(5*) <_ a(e), so that  the existence of V2.n satisfies Condition (A2). Setting 

re(t) = Vl(t, xt(to,¢)) + V2.,(t, xt(to,¢)), t ~ [tl,to], 

D+m(t) <_ g2(t,m(t)), t c [tl,t2], 

which yields from Theorem 8.1.2 of [9], 

V1 (t2, xt2 (to, ¢)) q- V2.~ (t2, xt2 (to, ¢)) _< r2 (t2, t l ,  gl (tl, Ztl (to, ¢)) + V2.rl (tl, xtl (to, ¢))), 

where r2(tl,  tl, Wo) = wo, r2(tl, tl, Wo) is the maximal solution of (2.2). 
Also, we have 

gl (tl, ztl @0, ¢)) --~ rl (tl, to, Vl(t0, ¢)), 

where rl(tl ,  to, uo) is the maximal solutions of (2.1). 
By (2.5) and (2.6), we have 

5* 
vl(tl, x,1 (to, ¢)) _< T" (2.8) 

From (2.4) and (2.7), we get 
5* 

g2.~(tl,xtl(to,~b)) < -~-. (2.9) 

Thus, (2.3), (2.7)-(2.9), and (A2) yield the following contradiction: 

a(c) = allztl (to, ¢)ll 
g2.n (tl, xtl (to, ~b) ) 

_< bllx  (to, ¢)11 
= b(5*) 

_< a(@ 

Thus, the zero solution of (1.1) is Lipschitz stable, and the proof is completed. 

3. LIPSCHITZ ¢0-STABILITY 

In this section, we discuss Lipschitz ¢0-stability of the system of functional differential equa- 
tions (1.1) via the perturbing Liapunov functional method. 

we get 
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THEOREM 2. Suppose that there exist two functions G1 E C[~ + x ~+, ~n] and G2 E C[~ + x 
~+, ~t~], and two functionals Vl(t, xt) e C[J x ~c ,g] ,  V2(t, xt) e C[J x So(p) n SS(n),g], with 
yl(t ,o)  = y2(t,  0) = a l ( t , o )  = a 2 ( t , o )  = o such that 

(As) for every ~/> 0, there exists a function V2.n(t, xt) 6 C[J x S(p) x SC(r/),~+], Vl(t, xt) is 
Lipschitzian in x~ and 

D+(¢o,Vl(t,x~)) <_ G l ( t , h ( t ,  xt)), (t, xt) c J × so(p); 

(A6) V2.n(t, xt) is Lipschitzian in xt and 

a(¢o,x~') <_ (¢o, V2.n(t,x~)) <_ b(¢o,x~), 

w~ere a, b e ~,  (t, xt) ~ J x So(p) n SS(~), and ¢o e K~; 
(AT) for each ¢o e K~, (t, xt) • J × So(p) n S~(~), 

D+(¢o, Vl(t, xt)) + D+(¢o, V2(t, xt)) <_ G2(t, Vl(t, xt) + V2(t, x,)); 

(As) the zero solution of the system 

u' = a(t ,  u), u(to) = uo >__ O, (3.1) 

is Lipschitz Co-stable, and the zero solution of the system 

w' = a(t ,  w), w(to)  = Wo > 0, (3.2) 

is uniformly Lipschitz ¢o-stab/e. 

Then, the zero solution of (1.1) is Lipschitz Co-stable. 

PROOF. Since the zero solution of (3.2) is uniformly Lipschitz Co-stable, let 0 < e < p, for 
to • ~+, there exist 50 = 5o(e) > 0 and M > 1 such that for ¢o • K~ 

(¢o,r2(t, to,wo)) <_ (¢o, Mwo), t > to, (3.3) 

provided that (¢o, wo) < ~o, where r2(t, to, Wo) is the maximal solution of (3.2). 
From the assumption on b(s), there exists 32 = 52(e) > 0 such that 

~o (3A) 

From our assumption, the zero solution of (3.1) is Lipschitz Co-stable, for to • ~+, there exists 
~1 = ~l(to, e) > 0, M > 1, such that for ¢o • K~ 

(¢o,rl(t, to,uo)) <_ (¢o,Muo), t > to, (3.5) 

provided that (¢o, uo) < 61, rl(t, to, uo) being the maximal solution of (3.1). 
Following [1], choosing ¢ = Vl(to, ¢), since Vl(t, x,) is continuous and Vl(t, O) = O, there exists 

~3 > 0 such that  for ¢o • K~ 

( ¢ o , ¢ )  < ~3 ~ (¢o, y~ ( t0 ,~ ) )  < ~, t > to. (3.6) 

Now, to prove that the zero solution of (1.1) is Lipschitz Co-stable, it must be proved that 

(¢o,¢) < 5~ ~ (¢o,x~'(to,¢)) < (¢o,M¢), M > 1, t > to, 
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where x~" is the maximal solution of (1.1). Suppose that this is not true, then there exist tl, t2 > to 
such that for (¢0, ~b) <: 53, 

(¢o, x~ (to, ¢))  = ~, 

* t (~90,Xt2(0,~)) < (~3, (3.7) 

(¢o,x~(to,¢)) < (¢0, M¢) ,  t E [tl,t2]. 

Let ~3 = r//2 and a(53) < a(e), so that Condition (A6) is assured. Setting 

re(t) = Vl(t, x t ( to ,¢))  + V2.~(t, xt( to,¢)) ,  t ¢ [tl,t0], 

we get for ¢0 E K~ 
D+(¢o,m(t))  < G2(t, rn(t)), t E [tl,t2], 

which yields from Theorem 1.8.2 of [9] 

(¢o, vl(t2, xt, (to, ¢)) + v~,(t~, xt~ (to, ¢ ) ) )  

(¢0, r2 (t2, t l ,  Yl ( t l ,  xtl  (to, ¢ ) )  q- V2., ( t l ,  xtl (to, ¢)))) ,  

where r2(tl, to, w0) is the maximal solution of (3.2) with r2(tl, to, wo) = w0. 
Also, we have for ¢0 e K~ 

(q~o, Vl(t l ,  x t ,  (to, ¢)) )  <_ (¢o, r l ( t l ,  to, V1 (t0, ¢ ) ) ) ,  

where rl( t l ,  to, uo) is the maximal solution of (3.1). 
By (3.5) and (3.6), we have 

53 (¢0, V~(t~,x;~ (to, ¢)) ) < ~.  (3.8) 

From (3.4) and (3.7), we get 
~3 (¢o, v2 , ( t l ,  x* (to, ¢)))  < - .  tl 2 

Thus, (3.3), (3.7)-(3.9), and (A6) yield the following contradiction: 

a(e) = a (¢o, x; 1 (to, ~b)) 

_< (¢o, vs .  (tl, ~;,(to, ¢))) 
< b (¢0, x~, (to, ¢))  
= b (~3) 
< a(~) .  

Thus, the zero solution of (1.1) is Lipschitz Co-stable, and the proof is completed. 

(3.9) 
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